Teaching and Learning Activities
Example 6: Dividing three expressions
\[
\begin{aligned}
12 a^{2} b \div 2 a \div(-3 b) & =-\frac{12 a^{2} b}{2 a \times 3 b} \\
& =-2 \mathrm{a}
\end{aligned}
\]
\[
\begin{aligned}
A \div B \div C & =\frac{A}{B} \div C \\
& =\frac{A}{B \times C}
\end{aligned}
\]
Key Ideas
Multiply monomial expressions by taking the product of the coefficient and multiplying it by the product of the letters.
Exercises
32
1. Calculate.
(i) \( (-4 x) \times 5 y \)
(ii) \( (-7 y) \times(-3 x) \)
(iii) \( \frac{5}{9} a \times(-3 b) \)
(iv) \( \frac{1}{2} x \times \frac{3}{4} x \)
2. Calculate.
(i) \( (-7 a)^{2} \)
(ii) \( \frac{1}{3} x \times(3 x)^{2} \)
(iii) \( -(4 x)^{2} \)
(iv) \( (-a)^{2} \times 3 a \)
3. Calculate.
(i) \( (-6 a b) \div 2 a \)
(ii) \( 8 x^{2} \div x \)
(iii) \( \left(-9 x^{2} y\right) \div(-3 y) \)
(iv) \( 5 a^{2} \div\left(-10 a^{2}\right) \)
4. Calculate.
(i) \( 7 x^{2} \div\left(-\frac{7}{4} x\right) \)
(ii) \( -\frac{5}{18} a b \div\left(-\frac{10}{9} b\right) \)
(iii) \( -\frac{1}{5} x^{2} y \div \frac{1}{5} x \)
(iv) \( \frac{2}{3} y^{2} \div \frac{3}{2} y^{2} \)
5. Calculate.
(i) \( 2 a \times 3 a b \times 4 b \)
(ii) \( 6 a b \times(-7 a) \div 14 b \)
(iii) \( 8 x^{2} \div(-4 x) \times(-3 x) \)
(iv) \( 16 x y^{2} \div 4 y \div(-2 x) \)
- Multiply the coefficients \((-4)\) and \(5\) and then multiply the variable components \(x\) and \(y\) for the expression \((-4x) \times 5y\).
- \(-20xy\) 2.
- Multiply the coefficients \((-7)\) and \((-3)\) and then multiply the variables \(y\) and \(x\) for the expression \((-7y) \times (-3x)\).
- \(21xy\) 3.
- Multiply the coefficient \(\frac{5}{9}\) by \(-3\) and then attach the variables \(a\) and \(b\) for the expression \(\frac{5}{9}a \times (-3b)\).
- \(-\frac{5}{3}ab\) 4.
- Multiply the coefficients \(\frac{1}{2}\) and \(\frac{3}{4}\) and then multiply \(x\) by \(x\) for the expression \(\frac{1}{2}x \times \frac{3}{4}x\).
- \(\frac{3}{8}x^2\) 5.
- Square the monomial \((-7a)\) by squaring its coefficient and variable separately.
- \(49a^2\) 6.
- First square the monomial \(3x\) to get \(9x^2\) and then multiply it by \(\frac{1}{3}x\) for the expression \(\frac{1}{3}x \times (3x)^2\).
- \(3x^3\) 7.
- Square the monomial \(4x\) to get \(16x^2\) and then apply the negative sign from \(-\,(4x)^2\).
- \(-16x^2\) 8.
- Square the monomial \((-a)\) to get \(a^2\) and then multiply it by \(3a\) for the expression \((-a)^2 \times 3a\).
- \(3a^3\) 9.
- Divide \(-6ab\) by \(2a\) by dividing the coefficients and cancelling the common variable \(a\) for the expression \((-6ab) \div 2a\).
- \(-3b\) 10.
- Divide \(8x^2\) by \(x\) by dividing the coefficients and subtracting the exponents of \(x\).
- \(8x\) 11.
- Divide \(-9x^2y\) by \(-3y\) by dividing the coefficients and cancelling the variable \(y\).
- \(3x^2\) 12.
- Divide \(5a^2\) by \(-10a^2\) by dividing the coefficients and cancelling the common variable factor \(a^2\).
- \(-\frac{1}{2}\) 13.
- Divide \(7x^2\) by \(-\frac{7}{4}x\) by dividing the coefficients and subtracting exponents of \(x\).
- \(-4x\) 14.
- Divide \(-\frac{5}{18}ab\) by \(-\frac{10}{9}b\) by dividing the coefficients and cancelling the common variable \(b\).
- \(\frac{1}{4}a\) 15.
- Divide \(-\frac{1}{5}x^2y\) by \(\frac{1}{5}x\) by dividing the coefficients and reducing the power of \(x\).
- \(-xy\) 16.
- Divide \(\frac{2}{3}y^2\) by \(\frac{3}{2}y^2\) by dividing the coefficients and cancelling the common variable \(y^2\).
- \(\frac{4}{9}\) 17.
- Multiply the expressions \(2a\), \(3ab\), and \(4b\) by multiplying the coefficients together and then combining the like variables.
- \(24a^2b^2\) 18.
- First multiply \(6ab\) by \(-7a\) (multiplying coefficients and combining variables), then divide the result by \(14b\), cancelling the common variable \(b\).
- \(-3a^2\) 19.
- First divide \(8x^2\) by \(-4x\) by dividing the coefficients and reducing the power of \(x\), then multiply the result by \(-3x\).
- \(6x^2\) 20.
- First divide \(16xy^2\) by \(4y\) by dividing the coefficients and cancelling one \(y\), then divide that result by \(-2x\) by dividing coefficients and cancelling \(x\).
- \(-2y\)