Sizzle Logo
Teaching and Learning Activities Example 6: Dividing three expressions \[ \begin{aligned} 12 a^{2} b \div 2 a \div(-3 b) & =-\frac{12 a^{2} b}{2 a \times 3 b} \\ & =-2 \mathrm{a} \end{aligned} \] \[ \begin{aligned} A \div B \div C & =\frac{A}{B} \div C \\ & =\frac{A}{B \times C} \end{aligned} \] Key Ideas Multiply monomial expressions by taking the product of the coefficient and multiplying it by the product of the letters. Exercises 32 1. Calculate. (i) \( (-4 x) \times 5 y \) (ii) \( (-7 y) \times(-3 x) \) (iii) \( \frac{5}{9} a \times(-3 b) \) (iv) \( \frac{1}{2} x \times \frac{3}{4} x \) 2. Calculate. (i) \( (-7 a)^{2} \) (ii) \( \frac{1}{3} x \times(3 x)^{2} \) (iii) \( -(4 x)^{2} \) (iv) \( (-a)^{2} \times 3 a \) 3. Calculate. (i) \( (-6 a b) \div 2 a \) (ii) \( 8 x^{2} \div x \) (iii) \( \left(-9 x^{2} y\right) \div(-3 y) \) (iv) \( 5 a^{2} \div\left(-10 a^{2}\right) \) 4. Calculate. (i) \( 7 x^{2} \div\left(-\frac{7}{4} x\right) \) (ii) \( -\frac{5}{18} a b \div\left(-\frac{10}{9} b\right) \) (iii) \( -\frac{1}{5} x^{2} y \div \frac{1}{5} x \) (iv) \( \frac{2}{3} y^{2} \div \frac{3}{2} y^{2} \) 5. Calculate. (i) \( 2 a \times 3 a b \times 4 b \) (ii) \( 6 a b \times(-7 a) \div 14 b \) (iii) \( 8 x^{2} \div(-4 x) \times(-3 x) \) (iv) \( 16 x y^{2} \div 4 y \div(-2 x) \)
  1. Multiply the coefficients \((-4)\) and \(5\) and then multiply the variable components \(x\) and \(y\) for the expression \((-4x) \times 5y\).
  2. \(-20xy\) 2.
  3. Multiply the coefficients \((-7)\) and \((-3)\) and then multiply the variables \(y\) and \(x\) for the expression \((-7y) \times (-3x)\).
  4. \(21xy\) 3.
  5. Multiply the coefficient \(\frac{5}{9}\) by \(-3\) and then attach the variables \(a\) and \(b\) for the expression \(\frac{5}{9}a \times (-3b)\).
  6. \(-\frac{5}{3}ab\) 4.
  7. Multiply the coefficients \(\frac{1}{2}\) and \(\frac{3}{4}\) and then multiply \(x\) by \(x\) for the expression \(\frac{1}{2}x \times \frac{3}{4}x\).
  8. \(\frac{3}{8}x^2\) 5.
  9. Square the monomial \((-7a)\) by squaring its coefficient and variable separately.
  10. \(49a^2\) 6.
  11. First square the monomial \(3x\) to get \(9x^2\) and then multiply it by \(\frac{1}{3}x\) for the expression \(\frac{1}{3}x \times (3x)^2\).
  12. \(3x^3\) 7.
  13. Square the monomial \(4x\) to get \(16x^2\) and then apply the negative sign from \(-\,(4x)^2\).
  14. \(-16x^2\) 8.
  15. Square the monomial \((-a)\) to get \(a^2\) and then multiply it by \(3a\) for the expression \((-a)^2 \times 3a\).
  16. \(3a^3\) 9.
  17. Divide \(-6ab\) by \(2a\) by dividing the coefficients and cancelling the common variable \(a\) for the expression \((-6ab) \div 2a\).
  18. \(-3b\) 10.
  19. Divide \(8x^2\) by \(x\) by dividing the coefficients and subtracting the exponents of \(x\).
  20. \(8x\) 11.
  21. Divide \(-9x^2y\) by \(-3y\) by dividing the coefficients and cancelling the variable \(y\).
  22. \(3x^2\) 12.
  23. Divide \(5a^2\) by \(-10a^2\) by dividing the coefficients and cancelling the common variable factor \(a^2\).
  24. \(-\frac{1}{2}\) 13.
  25. Divide \(7x^2\) by \(-\frac{7}{4}x\) by dividing the coefficients and subtracting exponents of \(x\).
  26. \(-4x\) 14.
  27. Divide \(-\frac{5}{18}ab\) by \(-\frac{10}{9}b\) by dividing the coefficients and cancelling the common variable \(b\).
  28. \(\frac{1}{4}a\) 15.
  29. Divide \(-\frac{1}{5}x^2y\) by \(\frac{1}{5}x\) by dividing the coefficients and reducing the power of \(x\).
  30. \(-xy\) 16.
  31. Divide \(\frac{2}{3}y^2\) by \(\frac{3}{2}y^2\) by dividing the coefficients and cancelling the common variable \(y^2\).
  32. \(\frac{4}{9}\) 17.
  33. Multiply the expressions \(2a\), \(3ab\), and \(4b\) by multiplying the coefficients together and then combining the like variables.
  34. \(24a^2b^2\) 18.
  35. First multiply \(6ab\) by \(-7a\) (multiplying coefficients and combining variables), then divide the result by \(14b\), cancelling the common variable \(b\).
  36. \(-3a^2\) 19.
  37. First divide \(8x^2\) by \(-4x\) by dividing the coefficients and reducing the power of \(x\), then multiply the result by \(-3x\).
  38. \(6x^2\) 20.
  39. First divide \(16xy^2\) by \(4y\) by dividing the coefficients and cancelling one \(y\), then divide that result by \(-2x\) by dividing coefficients and cancelling \(x\).
  40. \(-2y\)
iOS DownloadAndroid Download